Inhibition of the Sur1-Trpm4 channel reduces neuroinflammation and cognitive impairment in subarachnoid hemorrhage.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Subarachnoid hemorrhage (SAH) can leave patients with memory impairments that may not recover fully. Molecular mechanisms are poorly understood, and no treatment is available. The sulfonylurea receptor 1-transient receptor potential melastatin 4 (Sur1-Trpm4) channel plays an important role in acute central nervous system injury. We evaluated upregulation of Sur1-Trpm4 in humans with SAH and, in rat models of SAH, we examined Sur1-Trpm4 upregulation, its role in barrier dysfunction and neuroinflammation, and its consequences on spatial learning. METHODS We used Förster resonance energy transfer to detect coassociated Sur1 and Trpm4 in human autopsy brains with SAH. We studied rat models of SAH involving filament puncture of the internal carotid artery or injection of blood into the subarachnoid space of the entorhinal cortex. In rats, we used Förster resonance energy transfer and coimmunoprecipitation to detect coassociated Sur1 and Trpm4, we measured immunoglobulin G extravasation and tumor necrosis α overexpression as measures of barrier dysfunction and neuroinflammation, and we assessed spatial learning and memory on days 7 to 19. RESULTS Sur1-Trpm4 channels were upregulated in humans and rats with SAH. In rats, inhibiting Sur1 using antisense or the selective Sur1 inhibitor glibenclamide reduced SAH-induced immunoglobulin G extravasation and tumor necrosis α overexpression. In models with entorhinal SAH, rats treated with glibenclamide for 7 days after SAH exhibited better platform search strategies and better performance on incremental and rapid spatial learning than vehicle-treated controls. CONCLUSIONS Sur1-Trpm4 channels are upregulated in humans and rats with SAH. Channel inhibition with glibenclamide may reduce neuroinflammation and the severity of cognitive deficits after SAH.
منابع مشابه
The Sur1-Trpm4 Channel in Spinal Cord Injury.
Spinal cord injury (SCI) is a major unsolved challenge in medicine. Impact trauma to the spinal cord shears blood vessels, causing an immediate 'primary hemorrhage'. During the hours following trauma, the region of hemorrhage enlarges progressively, with delayed or 'secondary hemorrhage' adding to the primary hemorrhage, and effectively doubling its volume. The process responsible for the secon...
متن کاملGlibenclamide for the Treatment of Ischemic and Hemorrhagic Stroke
Ischemic and hemorrhagic strokes are associated with severe functional disability and high mortality. Except for recombinant tissue plasminogen activator, therapies targeting the underlying pathophysiology of central nervous system (CNS) ischemia and hemorrhage are strikingly lacking. Sur1-regulated channels play essential roles in necrotic cell death and cerebral edema following ischemic insul...
متن کاملThe Sulfonylurea Receptor 1 (Sur1)-Transient Receptor Potential Melastatin 4 (Trpm4) Channel*
The sulfonylurea receptor 1 (Sur1)-NC(Ca-ATP) channel plays a central role in necrotic cell death in central nervous system (CNS) injury, including ischemic stroke, and traumatic brain and spinal cord injury. Here, we show that Sur1-NC(Ca-ATP) channels are formed by co-assembly of Sur1 and transient receptor potential melastatin 4 (Trpm4). Co-expression of Sur1 and Trpm4 yielded Sur1-Trpm4 hete...
متن کاملGlibenclamide for the Treatment of Acute CNS Injury
First introduced into clinical practice in 1969, glibenclamide (US adopted name, glyburide) is known best for its use in the treatment of diabetes mellitus type 2, where it is used to promote the release of insulin by blocking pancreatic KATP [sulfonylurea receptor 1 (Sur1)-Kir6.2] channels. During the last decade, glibenclamide has received renewed attention due to its pleiotropic protective e...
متن کاملSulfonylurea receptor 1 in central nervous system injury: a focused review
The sulfonylurea receptor 1 (Sur1)-regulated NC(Ca-ATP) channel is a nonselective cation channel that is regulated by intracellular calcium and adenosine triphosphate. The channel is not constitutively expressed, but is transcriptionally upregulated de novo in all cells of the neurovascular unit, in many forms of central nervous system (CNS) injury, including cerebral ischemia, traumatic brain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 44 12 شماره
صفحات -
تاریخ انتشار 2013